Continuous-variable quantum-key-distribution protocols with a non-Gaussian modulation
نویسندگان
چکیده
منابع مشابه
Quantum Key Distribution using Continuous-variable non-Gaussian States
In this work we present a quantum key distribution protocol using continuous-variable nonGaussian states, homodyne detection and post-selection. The employed signal states are the Photon Added then Subtracted Coherent States (PASCS) in which one photon is added and subsequently one photon is subtracted. We analyze the performance of our protocol, compared to a coherent state based protocol, for...
متن کاملLong Distance Continuous-Variable Quantum Key Distribution with a Gaussian Modulation
We designed high-efficiency error correcting codes allowing to extract an errorless secret key in a Continuous-Variable Quantum Key Distribution (CVQKD) protocol using a Gaussian modulation of coherent states and a homodyne detection. These codes are available for a wide range of signalto-noise ratios on an Additive White Gaussian Noise Channel (AWGNC) with a binary modulation and can be combin...
متن کاملLong-Distance Continuous-Variable Quantum Key Distribution with Advanced Reconciliation of a Gaussian Modulation
The two-way continuous-variable quantum key distribution (CVQKD) systems allow higher key rates and improved transmission distances over standard telecommunication networks in comparison to the one-way CVQKD protocols. To exploit the real potential of two-way CVQKD systems a robust reconciliation technique is needed. It is currently unavailable, which makes it impossible to reach the real perfo...
متن کاملContinuous-variable quantum key distribution protocols over noisy channels.
A continuous-variable quantum key distribution protocol based on squeezed states and heterodyne detection is introduced and shown to attain higher secret key rates over a noisy line than any other one-way Gaussian protocol. This increased resistance to channel noise can be understood as resulting from purposely adding noise to the signal that is converted into the secret key. This notion of noi...
متن کاملGaussian Quadrature Inference for Multicarrier Continuous-Variable Quantum Key Distribution
We propose the Gaussian quadrature inference (GQI) method for multicarrier continuousvariable quantum key distribution (CVQKD). A multicarrier CVQKD protocol utilizes Gaussian subcarrier quantum continuous variables (CV) for information transmission. The GQI framework provides a minimal error estimate of the quadratures of the CV quantum states from the discrete, measured noisy subcarrier varia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2011
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.83.042312